Steep switching devices for low power applications: negative differential capacitance/resistance field effect transistors

نویسندگان

  • Eunah Ko
  • Jaemin Shin
  • Changhwan Shin
چکیده

Simply including either single ferroelectric oxide layer or threshold selector, we can make conventional field effect transistor to have super steep switching characteristic, i.e., sub-60-mV/decade of subthreshold slope. One of the representative is negative capacitance FET (NCFET), in which a ferroelectric layer is added within its gate stack. The other is phase FET (i.e., negative resistance FET), in which a threshold selector is added to an electrode (e.g., source or drain) of conventional field effect transistor. Although the concept of the aforementioned two devices was presented more or less recently, numerous studies have been published. In this review paper, by reviewing the published studies over the last decade, we shall de-brief and discuss the history and the future perspectives of NCFET/phase FET, respectively. The background, experimental investigation, and future direction for developing the aforementioned two representative steep switching devices (i.e., NCFET and phase FET/negative resistance FET) are to be discussed in detail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the possibility of sub 60 mV/decade subthreshold switching in piezoelectric gate barrier transistors

A novel method for the reduction of subthreshold slope below the room-temperature Boltzmann limit of 60 mV/dec for a field-effect transistor based on negative differential capacitance is proposed. This effect uses electric field induced electrostriction of a piezoelectric gate barrier of the transistor. The mechanism amplifies the internal surface potential over the applied gate voltage. This i...

متن کامل

A steep-slope transistor based on abrupt electronic phase transition

Collective interactions in functional materials can enable novel macroscopic properties like insulator-to-metal transitions. While implementing such materials into field-effect-transistor technology can potentially augment current state-of-the-art devices by providing unique routes to overcome their conventional limits, attempts to harness the insulator-to-metal transition for high-performance ...

متن کامل

A Novel Low Voltage, Low Power and High Gain Operational Amplifier Using Negative Resistance and Self Cascode Transistors

In this work a low power, low voltage and high gain operational amplifier is proposed. For this purpose a negative resistance structure is used in parallel with output to improve the achievable gain. Because of using self cascode transistors in the output, the proposed structure remains approximately constant in a relatively large output voltage swing causing an invariable gain. To evaluate the...

متن کامل

Analyzing the Effect Adding an Active Feedback Network with an Inductive behavior to a Common-Gate Topology as a Transimpedance Amplifier for Low-Power and Wide-Band Communication Applications

  Common Gate (CG) topologies are commonly used as the first stage in Transimpedance Amplifiers (TIA), due to their low input resistance. But, this structure is not solely used as a TIA and comes with other topologies such as differential amplifiers or negative resistances and capacitances. This paper deals with analyzing the effect of adding an active feedback network to a common gate topology...

متن کامل

Symmetrical, Low-Power, and High-Speed 1-Bit Full Adder Cells Using 32nm Carbon Nanotube Field-effect Transistors Technology (TECHNICAL NOTE)

Carbon nanotube field-effect transistors (CNFETs) are a promising candidate to replace conventional metal oxide field-effect transistors (MOSFETs) in the time to come. They have considerable characteristics such as low power consumption and high switching speed. Full adder cell is the main part of the most digital systems as it is building block of subtracter, multiplier, compressor, and other ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2018